ENGG(SERC) 3-924 : Computational Fluid Dynamics (L-T-P-C) :3-1-0-3

Course Coordinator : Dr. P. Hari Krishna

Introduction: Conservation of mass, momentum and energy equations, Convective forms of the equations; Differential Equations: Parabolic, elliptic and hyperbolic equations, Boundary and initial conditions, Over view of numerical methods; Finite Difference Technique: Taylor series expansion, Integration over element, Local function method, Treatment of boundary conditions, Boundary layer treatment, Convergence criteria; Finite Volume Technique: Types of finite volume grids, Approximation of surface and volume integrals, Interpolation methods – central, upwind and hybrid formulations, Convection-diffusion problem; Methods of Solution: Iterative methods, Matrix inversion methods, ADI method; Time Integration Methods: Single and multilevel methods, Predictor corrector methods, Stability analysis, Applications to transient conduction and advection-diffusion problems; Numerical Grid Generation: Basics, Transformation and mapping; Navier-Stokes Equations: Explicit and implicit methods, SIMPLE based methods, Fractional step methods; Turbulence modeling: Direct Numerical Simulation (DNS), Large Eddy Simulation(LES) and Reynolds-Averaged Navier-Stokes equations (RANS).